Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation.

نویسندگان

  • Bart L T Vaes
  • Patricia Ducy
  • Anneke M Sijbers
  • José M A Hendriks
  • Eugene P van Someren
  • Nanning G de Jong
  • Edwin R van den Heuvel
  • Wiebe Olijve
  • Everardus J J van Zoelen
  • Koen J Dechering
چکیده

A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly modulated by Runx2 in calvaria, forelimbs and hindlimbs, respectively. Bioinformatics analysis indicated that Runx2 not only controls the processes of osteoblast differentiation and chondrocyte maturation, but may also play a role in axon formation and hematopoietic cell commitment during bone development. A total of 41 genes are affected by the Runx2 deletion in both intramembranous and endochondral bone, indicating common pathways between these two developmental modes of bone formation. In addition, we identified genes that are specifically involved in endochondral ossification. In conclusion, our data show that a comparative genome-wide expression analysis of wild-type and mutant mouse models allows the examination of mutant phenotypes in complex tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

Runx2-I Isoform Contributes to Fetal Bone Formation Even in the Absence of Specific N-Terminal Amino Acids

The Runt-related transcription factor 2 (Runx2) gene encodes the transcription factor Runx2, which is the master regulator of osteoblast development; insufficiency of this protein causes disorders of bone development such as cleidocranial dysplasia. Runx2 has two isoforms, Runx2-II and Runx2-I, and production of each isoform is controlled by a unique promoter: a distal promoter (P1) and a proxi...

متن کامل

Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice.

Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2(+/-...

متن کامل

One of the major roles of chondrocytes during endochondral bone formation is the paracrine secretion of Ihh that is responsible for the specification of endochondral osteoprogenitors and the initiation of Runx2 expression (St-Jacques

INTRODUCTION The mammalian skull vault, which protects the brain, comprises bones derived from dual embryonic origins. Cells from both cranial neural crest (CNC) and paraxial mesoderm (PM) form skull progenitors, and these distinct populations are already spatially segregated in rostral and caudal domains above the eye in the mouse at E11.5 (Yoshida et al., 2008). Skull bones undergo intramembr...

متن کامل

Ihh and Runx2/Runx3 Signaling Interact to Coordinate Early Chondrogenesis: A Mouse Model

Endochondral bone formation begins with the development of a cartilage intermediate that is subsequently replaced by calcified bone. The mechanisms occurring during early chondrogenesis that control both mesenchymal cell differentiation into chondrocytes and cell proliferation are not clearly understood in vertebrates. Indian hedgehog (Ihh), one of the hedgehog signaling molecules, is known to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 39 4  شماره 

صفحات  -

تاریخ انتشار 2006